Artificial Intelligent Fund 4-6 Dec, New York

AI fund

Artificially Intelligent Funds – Generating Excess Returns with Artificial Intelligence & Deep Learning

10 Compelling Reasons to Join Us This December at the Artificially Intelligent Fund Conference         FSp

  1. Develop AI and machine learning capabilities through real use cases from big players in the industry
  2. Discover emerging trends and latest developments in AI and machine learning from industry players trading and investing on live investment models
  3. Learn how to develop a compelling Business Case to clients and CEOs to adopt AI and machine learning in investment approaches
  4. Rare gathering of talents including Quants, Data Scientists, Researchers, AI and machine learning experts and Investment Officers
  5. Explore solutions to challenges and potential risks and pitfalls before adopting AI and machine learning
  6. Discover more uses and applications of using AI, machine learning, deep learning, and reinforcement learning to make investments decisions and create positive trading outcomes
  7. Established speaker lineup from prominent and big industry players to meet and learn from
  8. Excellent networking platform to meet large hedge funds, fund of funds, researchers and investors
  9. Robust and all rounded exploration of different forms of machine learning techniques on investment strategies
  10. Build a world-class infrastructure that supports AI investments


The Forum at Glance

AI and Deep Learning for Trading

  • How AI & Deep Learning Can Learn Your Past Successful Trades and Replicate It Forward
  • Utilizing AI and Machine Learning to Establish Market Predictions and Placing High Probability Trades
  • Applying Different Machine Learning Techniques to Different Trading Strategy
  • Developing Robust Investment Algorithms with AI and Deep Learning
  • Applying Machine Learning and High-Frequency Trading

AI and Deep Learning for Investment for Investment & Portfolio Management

  • Next Generation Investment Systems with AI and Deep Learning
  • Picking Stocks with AI
  • Optimizing Asset Allocation with Artificial Intelligence
  • Assembling an Effective AI Team to Identify Investment Trends – Who and What Expertise You Need

Key Risks and Challenges with AI and Deep Learning

  • Challenges and Risks with AI and Trading
  • Understanding Weak Points of Artificial Intelligence and Machine Learning
  • Model Risk Management for Machine Learning and Trading Strategies


To lean more, visit:


Deep Learning TV

The 30-video long series offers outlines the most simple concepts underlying deep learning and neural networks, in addition to presenting real-world applications as well. DeepLearning.TV is a suitable resource even for those who have no experience with machine learning or big data, I’d even go so far as to recommend to any person who’s slightly curious about artificial intelligence. The style of DeepLearning.TV’s content proved to be just as valuable as the content itself. The combination of the presenter’s smooth speaking with their splashy and animated graphics facilitated an efficient learning environment.

Deep learning



Deep Learning TV

The Second Workshop on Processing Emotions, Decisions and Opinions (EDO 2017), November 17-19, 2017, Poznan, Poland

Processing Emotions, Decisions and Opinions

We would like to invite papers from researchers with the common interests in knowing more about ourselves and the world we live in by means of opinion and sentiment analysis, recommendations, Web mining, decision making, etc. We are also interested in gathering researchers working on emotions, psychology, sociology or ethics with Natural Language Processing tools.

We cordially invite experts, researchers and scholars in relevant fields to share their knowledge and join us in a constructive discussion on these topics.

Topics of interest include, but are not limited to:

Affect Analysis (and its applications)
Decisions and NLP
Ethics and NLP
Opinion Mining
Recommendation Systems
Sentiment Analysis
Social Informatics
Text mining techniques
Preference models
Knowledge acquisition
Pragmatics of decision making
Cognitive aspects of decisions and opinions


Important Dates

Paper Submission

23 Sep 2017

Acceptance/Rejection Decision

10 Oct 2017

Camera-Ready Submission

23 Oct 2017

EDO Workshop

November 17-19, 2017

EDO 2017

5 machine learning trends that will define 2017

Machine learning is at the core of many innovations that are set to improve our daily lives this year.



1.     Machine learning in finance

The finance industry has historically used machine learning in consumer services such as credit checking and fraud investigation. But recently, with more accessible computing power and open source tools, the financial sector is using machine learning in applications ranging from loan approval and risk assessments, to asset management.

A recent advancement called sentiment analysis involves considering the impact of social media and news trends on commodities prices.

To learn more: 5 ML trends that will define 2017


Artificial intelligence is changing the face of finance


For better or worse, artificial intelligence (AI) has long been hailed as a symbol of the future. However, in many ways, the age of AI is already upon us. From Google to gaming, early versions of the technology are becoming more readily integrated into our daily lives. It is therefore no great surprise that AI has also found its way into an area where the speed and accuracy of digital calculations by a computer can far outweigh anything a human can do: financial trading.



To know more about it, Artificial intelligence is changing the face of finance

Fintech: Search for a super-algo

ai There has been a missuse or misundestanding about what Machine learning, a branch of AI, is. Generally,  many people relates the term AI to mean sentient computers as the ones in SciFi movies, but  in practice everyday tools such as Google’s language translation service, Netflix’s film recommendation engine or Apple’s Siri virtual assistant deploy rudimentary forms of AI.


In fact, an interesting view of ML and AI is posed by Matthew Dixon, assistant professor of finance at the Illinois Institute of Technology, who defines machine learning as an “optimisation machine that minimises chaos”. It can learn the difference between bananas and apples and sort them out, or even teach a computer how to play and quickly master a game like Super Mario from scratch. Machine learning can also be unleashed on “unstructured data”, such as jumbled numbers but also images and videos that are usually difficult for a computer to understand.
To learn more about this topic, visit Fintech article in the FT

Machine Learning for Trading

Level: Intermediate

Hours: 6hs per week . Aprox. 4 months

Built by Georgia Tech


Course Description

This course introduces students to the real world challenges of implementing machine learning based trading strategies including the algorithmic steps from information gathering to market orders. The focus is on how to apply probabilistic machine learning approaches to trading decisions. We consider statistical approaches like linear regression, KNN and regression trees and how to apply them to actual stock trading situations.

To learn more about it, visit  Machine Learning for Trading

Algorithms are changing business: here’s how to leverage them

 algoritFrom data to algorithms

With the advance of technology, companies and consumers are generating more and more data. Collecting and storing massive amounts of data is not enough to gain competitive advantage. In order to beat the competition, organisations must do more than simply analyse the data. It’s now about what actions you can derive from your data in order to add value. Bring in the algorithms…



Read more: Algorithms are changing business


Diplomatura en Análisis de Datos para Negocios, Finanzas e Investigación de Mercados

Inicio:  Saturday, MAY 7, 2016  diplo


81 horas reloj


Días y horarios:

7 de Mayo al 17 de Diciembre de 2016.

Sábados de 10:00 a 13:00 Hs.


Lugar de realización:

Sede Centro – San Juan 951.



  • Externos: 10 Cuotas de $ 1500 y matricula de $ 1000.
  •  Alumnos y comunidad UAI:   10 Cuotas de $ 1100 y matricula bonificada.



Sede Centro – San Juan 951. Tel.: 4300-2147

Dirigido a:

Personal de empresas en áreas relacionadas con: toma de decisiones, estrategias de negocios, salud, análisis de riesgos, fraudes, finanzas, marketing y medicina.

Estudiantes de nivel terciario, estudiantes de grado de cualquier carrera afín. Podemos mencionar entre otras: Ciencias Empresariales, Ingeniería en Sistemas, Marketing, Ciencias Políticas, Gestión en Salud, Ciencias Exactas, etc.

De la misma manera, se encuentra fuertemente dirigida a investigadores en diversas disciplinas.



Que el alumno:

  • Adquiera una amplia y profunda gama de conceptos del Data Mining.
  • Conozca casos de éxito en diferentes industrias.
  • Pueda aplicar los conceptos adquiridos vivenciando el potencial de dichos conceptos.
  • Pueda programar aplicaciones sencillas para resolver problemas particulares.
  • Pueda profundizar en las plataformas de Software Libre mencionadas  para trabajar con toda la potencialidad del Data Mining, tanto a nivel académico como laboral.
  • Pueda aplicar los conocimientos obtenidos en la resolución de problemas reales en su campo laboral.



A lo largo de la Diplomatura se expondrán los algoritmos más utilizados en el Análisis de Datos, enfocándose en sus aplicaciones prácticas pero dando un importante panorama de sus aspectos teóricos.
Se explorarán diversas bases de datos orientadas a problemas relacionados con diferentes negocios y crearán potentes modelos predictivos y descriptivos orientados específicamente a resolver problemas empresariales.

Entre las problemáticas más destacadas a analizar se encuentran:

  • Segmentación Avanzada de Clientes
  • Predicción de la Demanda
  • Modelos de Predicción para Series Temporales y Financieras
  • Modelos de Scoring
  • Análisis de Riesgo
  • Detección y Prevención de Fraudes

Entre los algoritmos más importantes a estudiar se encuentran:

  • Redes Neuronales
  • Árboles de Decisión
  • Inferencia Bayesiana
  • Algoritmo de clustering K-Means
  • Teoría de la Información

A cargo de:

Juan Pablo Braña

Dra. Cristina Camós

Trad. Prof. Alejandra Litterio

Ing.Alexis Sarghel


Consultas a: